Search results for "Vehicles--Springs and suspension"
showing 2 items of 2 documents
Static output-feedback controller design for vehicle suspensions: an effective two-step computational approach
2014
In this study, a novel two-step methodology is applied in designing static output-feedback controllers for a class of vehicle suspension systems. Following this approach, an effective synthesis of static output-feedback controllers can be carried out by solving two consecutive linear matrix inequality optimisation problems. To illustrate the main features of the proposed design strategy, two different static output-feedback H 8 controllers are designed for a quarter-car suspension system. The first of those controllers uses the suspension deflection and the sprung mass velocity as feedback information, whereas the second one only requires the sprung mass velocity to compute the control acti…
Static output-feedback control for vehicle suspensions: a single-step linear matrix inequality approach
2013
In this paper, a new strategy to design static output-feedback controllers for a class of vehicle suspension systems is presented. A theoretical background on recent advances in output-feedback control is first provided, which makes possible an effective synthesis of static output-feedback controllers by solving a single linear matrix inequality optimization problem. Next, a simplified model of a quarter-car suspension system is proposed, taking the ride comfort, suspension stroke, road holding ability, and control effort as the main performance criteria in the vehicle suspension design. The new approach is then used to design a static output-feedbackH∞controller that only uses the suspensi…